

EPICS Process Database

Michael Davidsaver
mdavidsaver@bnl.gov

EPICS Collaboration Meeting Fall 2010

Goals

● Understand .db file and IOC shell syntax
● Be able to follow the flow of a database
● Add/modify an alarm condition
● Add a calcout record to modify a value

● Examples
● https://pubweb.bnl.gov/~mdavidsaver/training-201010.tar.gz

IOC Data Pipeline

● Configuration vs. Compilation

● Modular

● Database
● Data (Configuration)

● Device Support
● Operations

– Modify DB

– Access HW

● Stateless (ideally)

● Driver Support
● Catch-all

Hardware (Driver Support)

Records

Operator/Client/Other IOC

Device
Support

In the Database

● Record
● Collection of fields
● Recordtype
● Many have devSup

● Fields
● Atomic value (int, …)
● Scalar, array, or link
● Attributes (eg. PP)

● Record+Field=Process Variable

Hardware (Driver Support)

Records

Operator/Client/Other IOC

Device
Support

In the Database

● Record
● Collection of fields
● Recordtype
● Many have devSup

● Fields
● Atomic value (int, …)
● Scalar, array, or link
● Attributes (eg. PP)

record(ai, “myrecord:v17”) {

field(DESC, “neat”)

field(DTYP, “mydev”)

field(INP, “#C1 S7 @v”)

}

Record+Field=Process Variable

RDB Translation

● Process DB is an object database with an
integrated client (device support).

● In terms of a relational database
● recordtype → table
● record → row
● field → column
● link → foreign key (???)

● FK is a cell (column+row) pointing to a row.
● A Link is a cell pointing to another cell.

What is a record?

● A record is the basic
unit of “action” in a
database

● Field values modify
the action

● Records do
● Fields store

Record Device
Support

Fields

Device Support

● Compiled (C/C++)
● Associated with a

record
● Use pre-defined set

of hooks

● API
● report()
● init()
● init_record()
● get_iointr_info()
● process()

– read()
– write()

Db Syntax

● Recordtype
● Instance name

● $(P) macros expanded
when loaded

● Load same file several
times

● Field name
● Field value

● Always quote

record(ao, “$(P)name”) {

field(DTYP, “mydev”)

field(OUT, “#C$(C) S0 @”)

field(LINR, “LINEAR”)

field(ESLO, “0.1”)

}

Simple recordtypes

● Analog (float)
● ao, ai

● Binary
● bo, bi, mbbo, mbbi

● Integer (32-bit)
● longout, longin

VAL

OUT INP

ao ai

Pushes
value
to ...

Pulls
value
from ...

Simple recordtypes

● Analog (float)
● ao, ai

● Binary
● bo, bi, mbbo, mbbi

● Integer (32-bit)
● longout, longin

In VDCT

Simple recordtypes (2)

● Input
● VAL=read(INP)
● Operator reads VAL

● Output
● Operator sets VAL
● write(OUT,VAL)

● Address (INP/OUT)

VAL

OUT INP

ao ai

Pushes
value
to ...

Pulls
value
from ...

Calculator Record

● recordtype: calcout
● 12 Input links (A-L)
● 1 Output link (OUT)
● Result stored in VAL
● CALC field

● (A-B)/(A+B)
● Length limit (40 char)

● Changeable at runtime
● OUT, OCALC, OVAL will

be explained later

Calculator Record

● recordtype: calcout
● 12 Input links (A-L)
● 1 Output link (OUT)
● Result stored in VAL
● CALC field

● (A-B)/(A+B)
● Length limit (40 char)

● Changeable at runtime
● OUT, OCALC, OVAL will

be explained later

record(ai, “bpm:up”) {

}

record(ai, “bpm:down”) {

}

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(CALC, “(A-B)/(A+B)”)

}

Full list of CALC expression syntax
in record reference manual

Calculator Record

record(ai, “bpm:up”) {

}

record(ai, “bpm:down”) {

}

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(CALC, “(A-B)/(A+B)”)

}

Full list of CALC expression syntax
in record reference manual

Exercise 1 – softIoc Basics

● Executable: softIoc
● Part of EPICS Base
● No device support

Useful utilities from EPICS Base

caget, camonitor, caput, cainfo

The Counter

● Start script: count.cmd

dbLoadRecords(“count.db”, “P=myprefix”)

iocInit()

● Database: count.db

record(calcout, “$(P):count”) {

field(SCAN, “1 second”)

field(VAL, “7”)

field(INPA, “$(P):count.VAL NPP”)

field(INPB, “2”)

field(CALC, “A+B”)

}

● Simple 1 Hz counter

softIoc count.cmd

● Things to try

camonitor myprefix:count

caput myprefix:count.SCAN

“.1 second”

caput myprefix:count.B -2

Select your own

Full list of CALC expression syntax
in record reference manual

Extending Counter

● Things to try
● Make the counter roll

over
Use “cond ? true : false”

Set limits

field(HOPR, “10”)

field(LOPR, “0”)

● Examine CA meta-
data

● caget -d GR_DOUBLE
myprefix:count

● caget -d GR_ENUM
myprefix:count.SCAN

● caget -a myprefix:count

Database Scanning

● Cause processing
● When actions happen

● Inputs read
● Outputs written
● Value conversion
● Alarms checked

● Defined per record
● SCAN field

● Conditions
● Periodic timer

– 1 second, 10
second, ...

● HW interrupt
– I/O Intr

● Passive
– More in a moment

Scan Examples

record(bi, “status..”) {

field(SCAN, “1 second”)

field(INP, “some:other”)

}

record(ai, “level..”) {

field(SCAN, “I/O Intr”)

field(DTYP, “myadc”)

field(INP, “#C1 S0 @adc”)

}

record(ao, “gain..”) {

field(SCAN, “Passive”)

field(DTYP, “mydac”)

field(INP, “#C1 S0 @gain”)

}

Device Support must
know which “interrupt”
source to use

Passive Scan

● Actions which can cause a Passive record to
process
● A 'Get'
● A 'Put'
● A forward link (more in moment)

● Things which can cause...
● A DB link from another record
● A CA client (another IOC, caget, EDM, BOY, …)
● The difference: None

Link Types

● PV Link
● Connect to another

field
● Any field (almost)
● Any IOC
● Local or Remote link

● Hardware Link
● Token for devSup
● Identifies (card 7, port 2)

PV Links
HW Links

Output Links

Input Links

A Link is the least common denominator of a local function call and and CA get/put

Link Types (2)

● Output Link
● Put data
● write value to

referenced field

● Input Link
● Get data
● Read value from

referenced field

● Forward Link
● Cause process()

Output Links

Input Links

PV Links
HW Links

A Link is the least common denominator of a local function call and and CA get/put

Constant Links

● Output
● No action

● Input
● Read a constant

value (default 0)
● Store in

associated value
field (INPA → A)

record(calcout, “bpm:y”) {

field(INPA, “bpm:up”)

field(INPB, “bpm:down”)

field(INPC, “14”)

field(CALC, “(A-B)/(A+B+C)”)

}

Scanning and Links

● Link attributes (PP or NPP)
● Input Links

● NPP – Read current field value.
● PP – Process then read new field

value

● Output Links
● NPP – Write field.
● PP – Write field then process using

new value.

● Default is NPP

calcout

Process Passive Links

● field(INP, “name NPP”)

● Gets current value

● field(INP, “name PP”)

● If 'name' is SCAN
Passive then process()

● Gets new value

● field(OUT, “name NPP”)

● Sets new value

● field(OUT, “name PP”)

● Sets new value
● If Passive then

process()

Forward Links

● NPP Links transfer
data

● PP Links transfer data
and causes processing

● Forward links only
causes processing

● Every record has 1
(FLNK)
● fanout has 8

record(bi, “bit1”) {

field(SCAN, “1 second”)

field(FLNK, “bit2”)

}

record(bi, “bit2”) {

field(FLNK, “bit3”)

}

record(bi, “bit3”) {

}

Link Types (3)

Input Link Output Link “Process” Link
PV Link Read a value from a field Write a value to a field
HW Link Read a value from a device/driver Write a value to a device/driver

record(ai, “$(P)chan1”) {
 field(FLNK, “$(P)loop”)
 field(DTYP, “adcX”)
 field(VAL , “0”)
 field(INP , “#C1 S0 @adc”)
 field(SCAN, “I/O Intr”)
}

record(calcout, “$(P)loop”) {
 field(INPA, “$(P)chan1”)
 field(INPB, “10e4”)
 field(INPC, “3.2”)
 field(CALC, “(B-A)*C”)
 field(OUT, “$(P)dac PP”)
}

record(ao, “$(P)dac”) {
 field(DTYP, “PLC”)
 field(VAL , “0”)
 field(OUT ,”@CHAN4”)
}

The Real World

IO Scan List

Record Processing Chains

● In most databases most records (~50%) don't
belong to a processing chain.

● Processing chains are usually short (2-3
records).

● Most databases have a few longer chains.

Add process chain examples
Pass 1 overview

Pass 2 step through

Exercise 2 – Random numbers

● calc expressions can contain 'RNDM' to
generate a uniform random number [0,1].

field(CALC, “RNDM”)

● A Gaussian distribution can be approximated by
summing 8 such numbers.

● What does '$(P):sum' in gauss.db actually use.

Example 2 – Database

record(calc, "$(P):unif") {

 field(CALC, "RNDM")

 field(PREC, "1")

}

record(calc, "$(P):sum") {

 field(SCAN, "1 second")

 field(CALC, "A+B+C+D+E+F+G+H")

 field(INPA, "$(P):unif")

 field(INPB, "$(P):unif")

 field(INPC, "$(P):unif")

 field(INPD, "$(P):unif")

 field(INPE, "$(P):unif")

 field(INPF, "$(P):unif”)

 field(INPG, "$(P):unif")

 field(INPH, "$(P):unif")

 field(PREC, "1")

 field(FLNK, "$(P):hist")

}

Alarms

● Each record has an alarm severity and status
● Severity: NO_ALARM, MINOR, MAJOR,

INVALID
● Status: READ, WRITE, LINK, …
● Conditions defined in record and device support
● Highest severity shown

Value Level Alarms

● For ao,ai, longout,
longin

● Severity
● NO_ALARM, MINOR,

MAJOR, INVALID
● Default: NO_ALARM

● Levels
● HIHI, HIGH, LOW,

LOLO

HIHI

HIGH

VAL

LOW

LOLO

Value Level Alarms

● For ao,ai, longout,
longin

● Severity
● NO_ALARM, MINOR,

MAJOR, INVALID
● Default: NO_ALARM

● Levels
● HIHI, HIGH, LOW,

LOLO

record(ai, “my:adc”) {

field(HIGH, “14”)

field(HSV, “MINOR”)

field(LOW, “-12”)

field(LSV, “MAJOR”)

}

Invalid Alarms

● For: ao, bo, calcout,
mbbo, stringout

● IVOA
● Continue Normally
● Don't drive outputs
● Set output to IVOV

● IVOV
● Same type as VAL

record(ao, “my:dac”) {

field(HIGH, “255”)

field(HSV, “INVALID”)

field(LOW, “0”)

field(LSV, “INVALID”)

field(IVOA, “Set output
to IVOV”)

field(IVOV, “0”)

}

Doesn't clip like
DRVH DRVL

Exercise 3 – Sine

● Use a counter calcout and another calcout
record to generate a sine wave.

● Set a minor alarm when >0.5 and a major alarm
when <-0.7

● Use only one calcout for both count and sine
(Hint: OCAL and OVAL fields)

Exercise 3 – Database

record(calcout, "$(P):sine:cnt") {

 field(SCAN, ".1 second")

 field(CALC, "A+B")

 field(INPA, "$(P):sine:cnt.VAL NPP")

 field(INPB, "0.01")

 field(OCAL, "sin(A)")

 field(OUT , "$(P):sine PP")

}

record(ai, "$(P):sine") {

 field(HIGH, "0.5")

 field(HSV , "MINOR")

 field(LOW , "-0.7")

 field(LSV , "MAJOR")

}

Link and Alarms

● Link attribute
MS/NMS

● NMS (default)
● Just get/put the value

● MS
● Get/put value and

alarm severity

● Propagate Alarms

record(ai, “one”) {

field(HIGH, “10”)

field(HSV, “MINOR”)

}

record(ai, “two”) {

field(INP, “one MS PP”)

field(SCAN, “1 second”)

}

Analog Scaling

● For: ao, ai
● Go from RVAL (integer) → VAL (float)

● field(DTYP, “Raw Soft Channel”)
● Some other device support

● Players: LINR, ROFF, ASLO, AOFF, ESLO, EOFF
● VAL=(RVAL+ROFF)*ASLO+AOFF
● If LINR=”LINEAR”
● VAL=ESLO*VAL+EOFF
● EGU=”some string”

Analog Scaling Example

record(ai, “adc1”) {

field(DTYP, “myadc”)

field(ASLO, “0.1”)

field(AOFF, “10”)

field(ESLO, “”)

field(EOFF, “”)

field(EGU, “F”)

}

● ADC calibration
● 0.1 degrees/count
● Count 0 is 10 deg. C

● C → F

Record Timestamps

● Each record has one timestamp
● Shared by all fields

● Updated when processed
● NOT when values change
● Defaults to 0 (Jan. 1 1990) until first processed

● Problem for non-value fields
● camonitor recname.SCAN

● Makes archiving these fields tricky

Controlling Timestamps

● Fields:
● TSEL – Timestamp selection input link
● TSE – Timestamp Event
● TIME – Stored time (Not directly readable)

● Choose where timestamp is taken from
● Uses generalTime framework (>= 3.14.9)

Timestamp Selection

/* recGblTimeStamp() */

If TSEL is not CONSTANT

if TSEL points to a TIME field

TIME=dbGetTimeStamp(TSEL)

return

TSE=dbGetLink(TSEL)

if TSE != -2

TIME=epicsTimeGetEvent(TSE)

return

Takes time from record pointer
or CA metadata

Read an integer to use as the event number

Takes time of last occurrence
of event #

Special hidden TSEL link option

generalTime Events

● Normal events: 1-32k
● Not database events
● Hooks to event timing system (if present)
● No default provider

● Special events
● 0 – Current wall clock time
● -1 – Best event time (???)
● -2 – Allow device support to set TIME

TS Examples (1)

● Current wall clock time
● Default

record(ai, “name”) {

…

}

● Specific gT event

record(ai, “name”) {

field(TSE, “42”)

}

● From another record

record(calc, “name”) {

field(INPA, “other.VAL”)

field(TSEL, “other.TIME”)

}
● Take event # from

another record

record(calc, “name”) {

field(TSEL, “other.TSE”)

}

TSEL and CA_LINK

● Potential mistake if 'aaa' and 'bbb' are
in the same IOC.

● Example 1 (Wrong)
● aaa.TSEL is DB_LINK

● 'aaa' and 'bbb' in same lock set

● Timestamp may not match value

● Example 2 (Right)
● aaa.TSEL is CA_LINK

● 'aaa' and 'bbb' in different lock sets

● Rule: TSEL must use same type of
link as value link.

record(calc, “aaa”) {

field(INPA, “bbb CPP”)

field(TSEL, “bbb.TIME”)

}

record(calc, “aaa”) {

field(INPA, “bbb CPP”)

field(TSEL, “bbb.TIME CA”)

}
Uses meta-data
from previous
monitor/get.

Copies latest
From record struct

Set Timestamp is Device Support

● Set TSE to -2

record(ai, “aaa”) {

field(TSE, “-2”)

}

● In dset

read_ai(aiRecord* prec) {

if(prec->tse==epicsTimeEventDeviceTime) { /* -2 */
prec->time.secPastEpoch=... /* Use EPICS Epoch (Jan 1 1990) */

prec->time.nsec=...

}

}

Common Record Fields

● Device support: DTYP, INP, OUT

● Links: INP, OUT

● Scanning
● SCAN, PINI, PACT

● Values: VAL, OVAL, RVAL, RBV, RRBV

● Alarms
● STAT, SEVR

● HIHI, HIGH, LOW, LOLO

● HHSV (high high severity), HSV, LSV, LLSV

● Value+Alarm
● IVOA (invalid out action), IVOV (invalid out value)

● Display: EGU, DRVH, DRVL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

